AI & ML Interview Roadmap: A Step-by-Step Study Guide (2025)

AI & ML Interview Roadmap: A Step-by-Step Study Guide (2025)

6 min read 1174 words

๐Ÿ“˜ Usage Guidelines

This mindmap serves as an interactive, visual syllabus for ML/GenAI research and engineering roles. Each node links to a focused page for quick skimming or deep dives.

๐Ÿ” Zoom In / Out Tips:
Use your mouse scroll wheel or trackpad to zoom in and out.
Click and drag anywhere on the canvas to pan across the map.


# ML/GenAI Research Preparation

## ๐Ÿ“ Math Foundations

### Probability & Distributions
- [Conditional Probability](/core-skills/probability/conditional-probability)
- [Bayes Theorem](/core-skills/probability/bayes-theorem)
- [Permutations & Combinations](/core-skills/probability/permutations-combinations)
- [Bernoulli Distribution](/core-skills/distributions/bernoulli)
- [Binomial Distribution](/core-skills/distributions/binomial)
- [Gaussian (Normal) Distribution](/core-skills/distributions/gaussian)
- [Poisson Distribution](/core-skills/distributions/poisson)
- [Uniform Distribution](/core-skills/distributions/uniform)
- [PDF vs CDF](/core-skills/distributions/pdf-cdf)
- [Mean and Variance](/core-skills/distributions/mean-variance)

### Statistics & Inference
- [Mean, Median, Variance](/core-skills/statistics/descriptive-stats)
- [Law of Large Numbers](/core-skills/statistics/lln)
- [Central Limit Theorem](/core-skills/statistics/clt)
- [MLE (Maximum Likelihood Estimation)](/core-skills/inference/mle)
- [Confidence Intervals (CI)](/core-skills/inference/confidence-intervals)
- [p-value](/core-skills/inference/p-value)
- [z-test](/core-skills/inference/z-test)
- [t-test](/core-skills/inference/t-test)
- [Type I vs Type II Error](/core-skills/inference/type-i-ii-error)
- [A/B Testing](/core-skills/inference/ab-testing)

### Linear Algebra
- [Vectors and Vector Operations](/core-skills/linear-algebra/vectors)
- [Dot Product and Projections](/core-skills/linear-algebra/dot-product)
- [Matrix Multiplication & Transpose](/core-skills/linear-algebra/matrix-multiplication)
- [Identity, Inverse, Rank](/core-skills/linear-algebra/inverse-rank)
- [Linear Dependence and Span](/core-skills/linear-algebra/span-dependence)
- [Eigenvalues and Eigenvectors](/core-skills/linear-algebra/eigenvectors)
- [PCA (Principal Component Analysis)](/core-skills/linear-algebra/pca)
- [SVD (Singular Value Decomposition)](/core-skills/linear-algebra/svd)

### Calculus & Optimization
- [Derivatives and Partial Derivatives](/core-skills/calculus/derivatives)
- [Chain Rule](/core-skills/calculus/chain-rule)
- [Gradient and Jacobian](/core-skills/calculus/gradient)
- [Gradient Descent (GD)](/core-skills/optimization/gradient-descent)
- [Convex vs Non-convex Functions](/core-skills/optimization/convexity)
- [Loss Surfaces and Local Minima](/core-skills/optimization/loss-surfaces)


## ๐Ÿค– Machine Learning

### Core Concepts
- [Bias-Variance Tradeoff](/machine-learning/core/bias-variance)
- [Overfitting vs Underfitting](/machine-learning/core/overfitting-underfitting)
- [L1 vs L2 Regularization](/machine-learning/core/regularization)
- [Cross-Validation Techniques](/machine-learning/core/cross-validation)
- [Evaluation Metrics: Accuracy, Precision, Recall, F1, ROC-AUC](/machine-learning/core/evaluation-metrics)

### Linear Models
- [Linear Regression](/machine-learning/linear-models/linear-regression)
- [Logistic Regression](/logistic-regression-interview-guide/)
- [Mean Squared Error (MSE)](/machine-learning/linear-models/mse)
- [Cross-Entropy Loss](/machine-learning/linear-models/cross-entropy)
- [Gradient Descent](/machine-learning/linear-models/gradient-descent)

### Trees & Ensembles
- [Decision Trees: Gini vs Entropy](/machine-learning/trees/decision-trees)
- [Random Forest (Bagging)](/machine-learning/trees/random-forest)
- [Gradient Boosting](/machine-learning/trees/gradient-boosting)
- [XGBoost](/machine-learning/trees/xgboost)

### SVMs & Kernels
- [Hard Margin vs Soft Margin](/machine-learning/svm/hard-soft-margin)
- [Support Vectors & Decision Boundary](/machine-learning/svm/support-vectors)
- [Kernel Trick & Feature Space](/machine-learning/svm/kernel-trick)
- [RBF Kernel](/machine-learning/svm/rbf-kernel)
- [Polynomial Kernel](/machine-learning/svm/polynomial-kernel)

### Feature Engineering
- [Handling Missing Values](/machine-learning/features/missing-values)
- [Normalization (MinMax Scaling)](/machine-learning/features/minmax-scaling)
- [Standardization (Z-score)](/machine-learning/features/z-score-scaling)
- [One-Hot Encoding](/machine-learning/features/one-hot-encoding)
- [Label Encoding](/machine-learning/features/label-encoding)
- [Outlier Detection using Z-score](/machine-learning/features/outliers-zscore)
- [Outlier Detection using IQR](/machine-learning/features/outliers-iqr)

### Unsupervised Learning
- [K-Means Clustering](/machine-learning/unsupervised/kmeans)
- [PCA (Principal Component Analysis)](/machine-learning/unsupervised/pca)
- [PCA: Eigenvectors & Variance Explained](/machine-learning/unsupervised/pca-eigenvectors)

### [Recommendation System](/machine-learning/recommendation-system/)


## ๐Ÿง  Deep Learning

### Neural Network Fundamentals
- [Feedforward Neural Networks](/deep-learning/fundamentals/feedforward)
- [Backpropagation](/deep-learning/fundamentals/backpropagation)
- [Gradient Descent in Neural Nets](/deep-learning/fundamentals/gradient-descent)
- [Activation Function: ReLU](/deep-learning/fundamentals/relu)
- [Activation Function: Sigmoid](/deep-learning/fundamentals/sigmoid)
- [Activation Function: Tanh](/deep-learning/fundamentals/tanh)
- [Activation Function: Softmax](/deep-learning/fundamentals/softmax)

### CNNs
- [Convolutional Layers](/deep-learning/cnn/conv-layers)
- [Max Pooling Layer](/deep-learning/cnn/maxpool)
- [Dropout Layer](/deep-learning/cnn/dropout)
- [CNN for Image Classification (CIFAR/MNIST)](/deep-learning/cnn/image-classification)

### RNNs & Transformers
- [Recurrent Neural Networks (RNNs)](/deep-learning/rnn/rnn)
- [LSTM (Long Short-Term Memory)](/deep-learning/rnn/lstm)
- [GRU (Gated Recurrent Unit)](/deep-learning/rnn/gru)
- [Self-Attention Mechanism](/deep-learning/transformers/self-attention)
- [Positional Encoding](/deep-learning/transformers/positional-encoding)
- [Transformer Architecture](/deep-learning/transformers/architecture)
- [BERT (Bidirectional Encoder Representations)](/deep-learning/transformers/bert)
- [Using HuggingFace Transformers](/deep-learning/transformers/huggingface)

### Loss Functions
- [Mean Squared Error (MSE)](/deep-learning/loss-functions/mse)
- [Binary Cross-Entropy](/deep-learning/loss-functions/binary-cross-entropy)
- [Categorical Cross-Entropy](/deep-learning/loss-functions/categorical-cross-entropy)

### Optimization
- [Stochastic Gradient Descent (SGD)](/deep-learning/optimization/sgd)
- [Adam Optimizer](/deep-learning/optimization/adam)
- [Momentum in Optimization](/deep-learning/optimization/momentum)
- [Regularization in Deep Learning](/deep-learning/optimization/regularization)


## ๐Ÿงฎ Coding Interview Prep

### Arrays & Strings
- [Two Sum](/core-skills/coding/arrays/two-sum)
- [Longest Substring Without Repeating Characters](/core-skills/coding/arrays/longest-substring)

### HashMap / Sorting
- [Group Anagrams](/core-skills/coding/hashmap/group-anagrams)
- [Top K Frequent Elements](/core-skills/coding/hashmap/top-k-elements)

### Trees & Graphs
- [Binary Tree Level Order Traversal](/core-skills/coding/trees/level-order-traversal)
- [Binary Tree Inorder Traversal](/core-skills/coding/trees/inorder-traversal)
- [Maximum Depth of Binary Tree](/core-skills/coding/trees/max-depth)
- [Detect Cycle in Directed Graph](/core-skills/coding/graphs/cycle-detection)
- [Topological Sort (Course Schedule)](/core-skills/coding/graphs/topo-sort)

### Sliding Window
- [Minimum Window Substring](/core-skills/coding/sliding-window/min-window)
- [Longest Repeating Character Replacement](/core-skills/coding/sliding-window/repeating-characters)

### Dynamic Programming
- [Coin Change (1D DP)](/core-skills/coding/dp/coin-change)
- [House Robber (1D DP)](/core-skills/coding/dp/house-robber)
- [Maximal Square (2D DP)](/core-skills/coding/dp/max-square)
- [Unique Paths (2D DP)](/core-skills/coding/dp/unique-paths)

### Binary Search / Greedy
- [Search in Rotated Sorted Array](/core-skills/coding/binary-search/rotated-array)
- [Container With Most Water](/core-skills/coding/greedy/container-most-water)

### Linked Lists
- [Reverse Linked List](/core-skills/coding/linked-list/reverse)
- [LRU Cache](/core-skills/coding/linked-list/lru-cache)

### Mock Interviews
- [LeetCode Simulation Guide](/core-skills/coding/mock/simulation-guide)
- [Post-Interview Reflection Notes](/core-skills/coding/mock/reflection-notes)


## ๐Ÿ—ƒ๏ธ SQL + Analytics

### Core SQL Concepts
- [SQL Joins: INNER, LEFT, RIGHT, FULL](/core-skills/sql/core/joins)
- [Filters: WHERE, HAVING](/core-skills/sql/core/filters)
- [GROUP BY and Aggregation](/core-skills/sql/core/group-by-aggregation)

### Window Functions
- [ROW_NUMBER vs RANK](/core-skills/sql/window/row-number-rank)
- [LEAD and LAG](/core-skills/sql/window/lead-lag)

### Advanced Querying
- [Subqueries](/core-skills/sql/advanced/subqueries)
- [Common Table Expressions (CTEs)](/core-skills/sql/advanced/ctes)

### Real-World Data Challenges
- [StrataScratch SQL Practice](/core-skills/sql/practice/stratascratch)
- [LeetCode SQL Interview Questions](/core-skills/sql/practice/leetcode)


## ๐Ÿงช ML System Design

### ML Lifecycle
- [ML Lifecycle: Data โ†’ Features โ†’ Train โ†’ Serve โ†’ Monitor](/system-design/lifecycle/overview)

### Infrastructure
- [Model Registry](/system-design/infrastructure/model-registry)
- [CI/CD for ML Pipelines](/system-design/infrastructure/ci-cd)
- [Feature Store Design](/system-design/infrastructure/feature-store)

### Monitoring
- [Data Drift](/system-design/monitoring/data-drift)
- [Concept Drift](/system-design/monitoring/concept-drift)

### System Architectures
- [Fraud Detection System](/system-design/architecture/fraud-detection)
- [Recommendation System Pipeline](/system-design/architecture/recommendation)
- [Real-time Ads Ranking System](/system-design/architecture/ads-ranking)

### Design Patterns
- [Batch vs Real-Time Processing](/system-design/patterns/batch-vs-realtime)
- [Latency vs Throughput Trade-offs](/system-design/patterns/latency-throughput)
- [Shadow Deployment vs A/B Testing](/system-design/patterns/shadow-ab-testing)


## ๐Ÿงฌ GenAI & Advanced Topics

### General GenAI

#### Transformers from Scratch
- [Scaled Dot-Product Attention](/generative-ai/transformers/scratch/scaled-attention)
- [Positional Encodings](/generative-ai/transformers/scratch/positional-encoding)
- [Multi-Head Self Attention](/generative-ai/transformers/scratch/multi-head-attention)

#### HuggingFace Applications
- [Sentiment Classification with Transformers](/generative-ai/huggingface/sentiment-classification)
- [Named Entity Recognition (NER)](/generative-ai/huggingface/ner)
- [Question Answering with Transformers](/generative-ai/huggingface/question-answering)

#### GANs
- [Generator vs Discriminator](/generative-ai/gans/generator-discriminator)
- [Mode Collapse](/generative-ai/gans/mode-collapse)
- [Minimax Loss Function](/generative-ai/gans/minimax-loss)

#### Reinforcement Learning
- [Q-Learning Algorithm](/generative-ai/rl/q-learning)
- [SARSA Algorithm](/generative-ai/rl/sarsa)
- [Bellman Equation](/generative-ai/rl/bellman)
- [Deep Q-Network (DQN)](/generative-ai/rl/dqn)
- [Policy vs Value-Based Methods](/generative-ai/rl/policy-vs-value)

### large-language-models

#### Core Concepts
- [LLM Architecture: Encoder, Decoder, Attention](/generative-ai/large-language-models/foundation/architecture)
- [Tokenization: BPE, WordPiece, SentencePiece](/generative-ai/large-language-models/foundation/tokenization)
- [Embeddings: Static vs Contextual](/generative-ai/large-language-models/foundation/embeddings)
- [Language Modeling Objectives: Causal, Masked](/generative-ai/large-language-models/foundation/language-objectives)

#### Training & Fine-Tuning
- [Pretraining vs Finetuning](/generative-ai/large-language-models/training/pretraining-vs-finetuning)
- [Supervised Finetuning (SFT)](/generative-ai/large-language-models/training/supervised-finetuning)
- [Instruction Tuning](/generative-ai/large-language-models/training/instruction-tuning)
- [PEFT: LoRA, Adapters](/generative-ai/large-language-models/training/peft-lora-adapters)
- [Quantization & Distillation](/generative-ai/large-language-models/training/quantization-distillation)

#### Prompting & Reasoning
- [Prompt Engineering Basics](/generative-ai/large-language-models/prompting/prompt-engineering)
- [Chain of Thought (CoT)](/generative-ai/large-language-models/prompting/chain-of-thought)
- [Self-Consistency Decoding](/generative-ai/large-language-models/prompting/self-consistency)
- [Tree of Thoughts (ToT)](/generative-ai/large-language-models/prompting/tree-of-thought)
- [Multimodal Prompting](/generative-ai/large-language-models/prompting/multimodal)

#### Retrieval-Augmented Generation (RAG)
- [RAG Overview](/generative-ai/large-language-models/rag/overview)
- [Embedding Models for RAG](/generative-ai/large-language-models/rag/embeddings)
- [Vector Databases: FAISS, Pinecone, Weaviate](/generative-ai/large-language-models/rag/vector-databases)
- [LangChain for RAG](/generative-ai/large-language-models/rag/langchain)
- [LlamaIndex for RAG](/generative-ai/large-language-models/rag/llamaindex)
- [Serving RAG with FastAPI/Streamlit](/generative-ai/large-language-models/rag/serving)

#### Agents & Autonomy
- [ReAct: Reasoning + Acting](/generative-ai/large-language-models/agents/react)
- [AutoGPT & BabyAGI](/generative-ai/large-language-models/agents/autogpt)
- [Agentic Architectures (Toolformer, Code Interpreter)](/generative-ai/large-language-models/agents/agentic-architectures)
- [Memory, Planning, and Control (MCP)](/generative-ai/large-language-models/agents/mcp)
- [Tool Use, Plugins, APIs](/generative-ai/large-language-models/agents/tool-use)

#### Tooling & Frameworks
- [LangChain Basics](/generative-ai/large-language-models/tools/langchain)
- [LlamaIndex Deep Dive](/generative-ai/large-language-models/tools/llamaindex)
- [HuggingFace Transformers](/generative-ai/large-language-models/tools/huggingface)
- [OpenAI APIs](/generative-ai/large-language-models/tools/openai-api)
- [Model Serving: Triton, VLLM, TGI](/generative-ai/large-language-models/tools/serving)

#### Advanced Architectures & Capabilities
- [GPT Family (GPT-2, 3.5, 4, GPT-4o)](/generative-ai/large-language-models/models/gpt-family)
- [BERT Family (BERT, RoBERTa, DistilBERT)](/generative-ai/large-language-models/models/bert-family)
- [Long-Context Models (Claude, Gemini, Mistral)](/generative-ai/large-language-models/models/long-context)
- [Multimodal large-language-models (GPT-4o, Gemini, MM-ReAct)](/generative-ai/large-language-models/models/multimodal)
- [Open-Source large-language-models (LLaMA, Mistral, Mixtral)](/generative-ai/large-language-models/models/open-source)


## ๐Ÿงพ Review Tools

### Spaced Repetition
- [Flashcards: Anki Setup](/core-skills/review/tools/anki)
- [Physical Index Card System](/core-skills/review/tools/index-cards)

### Weekly Review
- [How to Create Weekly Review Sheets](/core-skills/review/routines/weekly-review)

### Whiteboard Sketches
- [Decision Tree Splits](/core-skills/review/visuals/decision-trees)
- [PCA 2D Projection from 3D](/core-skills/review/visuals/pca-projection)
- [CNN Architecture Pipeline](/core-skills/review/visuals/cnn-pipeline)

### Summary Sheets
- [Formula Sheet: Bayes Theorem](/core-skills/review/summary/bayes-formula)
- [Formula Sheet: Confidence Intervals](/core-skills/review/summary/confidence-interval)
- [Formula Sheet: Gradients & Optimization](/core-skills/review/summary/gradients)
- [Formula Sheet: PCA Eigenvectors](/core-skills/review/summary/pca-eigenvectors)
- [Formula Sheet: Loss Functions](/core-skills/review/summary/loss-functions)

๐Ÿ’ก Tip: Bookmark this mindmap and use it before interviews as a rapid revision tool.

๐Ÿ—“๏ธ Mindmap Updates

  • 2025-07-10: Added SQL + Analytics and Review Tools branches.
  • 2025-07-05: Integrated GenAI Agents & RAG subtopics.
  • 2025-07-01: Initial roadmap release covering Math โ†’ DL topics.

โ“FAQ

Q: Can I download or export this roadmap?
Not currently. For offline use, take a screenshot.

Q: Can I contribute?
Yes! Please drop a mail to me.

Any doubt in content? Ask me anything?
Chat
๐Ÿค– ๐Ÿ‘‹ Hi there! I'm your learning assistant. If you have any questions about this page or need clarification, feel free to ask!